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Abstract

We aim at improving the performance of distributed algorithms for model checking
and state space reduction. To this end, we introduce a new distribution policy of
states over workers. This policy reduces the number of transitions between states
located at different workers. This in turn is expected to reduce the communication
costs of the distributed algorithms.

The main idea is to use Abstract Interpretation techniques to compute a small
approximation of the state space, starting from some high level description of the
system. Based on this approximation, the connectivity of concrete states is pre-
dicted. This information is used to distribute states with expected connectivity to
the same worker. Experiments show a considerable reduction of cross transitions,
at the expense of a modest unbalance of nodes per worker.

1 Introduction

The behaviour of a reactive system can be represented as a state space or
labelled transition system (LTS). Nodes of the LTS correspond to states, edges
to transitions between states, and labels on edges correspond to events. In
enumerative model checking, an LTS is generated from a system specification,
and desired properties are checked by a model checking algorithm.

We here assume a full generation approach, where the generation phase
and model checking phase are separated. This can be contrasted to on-the-fly
model checking, where generation and model checking are interleaved. The
latter is convenient when a counter example is found before the whole LTS is
generated. However, if many properties of the same model must be checked,
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and no more counter examples are expected, full generation is a good al-
ternative. In particular, the state space is generated only once, and can be
subsequently reduced according to some property preserving equivalence, such
as (branching) bisimulation.

Examples of distributed algorithms for enumerative verification are state
space generation [7], [5], state space reduction modulo bisimulations [4], de-
tection of strongly connected components [18] and model checking [2], [1].
They operate on very large state spaces that are divided into shares for every
node in the network (subsequently called “worker”). Each worker stores the
outgoing transitions of all the states (source nodes) that it owns.

The performance of distributed algorithms depends on the computation
load per worker. But, unlike sequential or parallel shared memory algorithms,
distributed algorithms run on a network, so the performance also depends
highly on the communication costs, that is on the total number of messages
passed between the workers.

Most algorithms above are based on reachability procedures, in which in-
formation is transfered between states that are connected by transitions. So,
in order to reduce the communication costs, we must minimize the number of
cross transitions, i.e., edges between states on different workers. At the same
time, the number of nodes per worker must be balanced, in order to maximally
exploit the parallelism possibilities.

The problem we address in this paper is to find distributions that reduce
the number of cross transitions, without compromising the balance of nodes
per worker too much. Note that graph partitioning is inherently hard, so
even though the state space is completely generated, it is infeasible to directly
compute the optimal distribution.

As a solution, we propose to compute a small approximation of the state
space by an abstract interpretation [8,15] of the system specification. The
connectivity of abstract states is used to predict connectivity between the
corresponding concrete states. In particular, the abstraction function is used,
in order to assign the states to a worker.

As a feasibility study, we implemented this distribution policy. We mea-
sured the number of nodes per worker and the number of cross transitions.
We compared the results with the random distribution on a number of large
state spaces (millions of states). The improvement on the cross transitions
are impressive, while the penalty of unbalanced number of nodes per worker
remains modest. So, even though our ideas have not yet been inserted in the
actual distributed algorithms, the results are very encouraging.

Related work. Many papers presenting distributed model checking algo-
rithms and other distributed applications on large graphs, acknowledge the
importance of a good graph partitioning method. Graph (bi-)partitioning
is an NP-hard optimization problem [9], therefore near-optimal solutions are
computed using specialized heuristics or general stochastic procedures (like
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simulated annealing, genetic algorithms). Our approach is an heuristics espe-
cially designed for graphs representing behaviours (LTSs).

The effects of the partitioning scheme on the performance of distributed
state space generation for timed Petri nets were documented in [24]. Not
surprisingly, it was found that states that are clustered together should be
sent to the same processor. But no procedure for finding “good” partitioning
functions was suggested.

Our approach has similarities to the one presented in [7], where a partition-
ing function is defined taking into account the structure of the original (Petri
net) specification. This gives a small number of cross transitions at the risk of
bad balance. However, our experiments show that the abstract interpretation
distribution algorithm produces a much lower proportion of cross transitions.

The partitioning problem shows up in symbolic model checking as well.
In [13], large BDDs are dynamically (re)sliced while computing the reachable
states. The main goal there is to keep the memory requirements balanced
throughout the computation.

2 Preliminaries

2.1 Distributed Enumerative Model Checking

All our distributed tools perform on an iterative basis, alternating computa-
tion and communication phases. The good performance of computation phases
relies on the balanced workload, that is on a balanced assignment of states to
workers. The communication phases consist mostly of exchanging information
about neighbour states. Therefore the communication performance depends
on the amount of transitions that cross worker boundaries (cross transitions).

Our algorithm for branching bisimulation reduction [4] walks, in every
iteration, through whole subgraphs of silent steps. This operation is especially
expensive if these subgraphs are scattered on more workers, as it is usually
the case in random state space distributions.

The distributed tool that finds cycles [18] has a phase where all local
(i.e., internal to a worker) strongly connected components are collapsed. In
a “good” distribution with few cross transitions, it is likely that this reduces
the state space considerably.

Definitions. Let Act be a fixed set of labels, representing actions. Act con-
tains a special action 7 that stands for an internal (silent) step. A Labelled
Transition System (LTS) is a triple (S, T, s¢) consisting of a set of states S, a
set of transitions 7" C S x Act x S and an initial state so € S. LTSs describe
in a precise manner the behaviour of protocols or systems under verification
and they are the format on which automatic model checking tools perform.
A distribution of an LTS to W network nodes (workers) is a partition of its
set of states into W pairwise disjoint subsets: S = S; U---U Sw. We denote
by T;; the set of transitions with the source state assigned to worker 7 and the
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destination state assigned to worker j. Then the elements of the sets T}; are
internal transitions and those of the sets T;; (i # j) are cross transitions.
For the goals discussed above, an efficient distribution of an LTS should have:

e balance, i.e., more-or-less the same number of states on each worker. To
measure this, we introduce the notion of worst case balance (WCb), as being
the difference (in %) between the biggest load (number of states) assigned to
a worker and the average load. Since the sets of states assigned to different
workers are disjoint, the average load is the total number of states divided
by the number of workers.

#S

S; — load
avgload = —, WCb = max (100 i ave'oa
W 1<i<W avgload

)

* a minimal number of cross transitions, or, in other words, as many internal
transitions as possible. We express this factor by the ratio (number of
internal transitions)/(total number of transitions):

Zlgigw #1i
#T

In Figure 1 a simple state space is shown and two possible distributions of it
on a network of two workers?. Both are perfectly balanced but the first one
is almost a worst-case scenario for distributed algorithms, while the second
one is extremely efficient, due to the small number of cross transitions and the
localization of cycles.

internal transitions ratio IntT =

~ W1
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Fig. 1. A balanced but bad state space partition (left) IntT = 38.4%
and a good partition (right) IntT = 92.3%

2.2 Modal Transition Systems

To model abstractions we use a structure that allows to represent approxima-
tions of the concrete system in a suitable way. A Modal Labelled Transition

3 We do not include action labels in the figures, because they are not necessary for the
understanding of the paper.
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System (Modal-LTS) is a graph in which edges have two modalities may and
must which denote the possible and necessary steps in the refinements. If in a
Modal-LTS, there is a must transition between two states then the transition
is required in all the refinements. If there is a may transition then the transi-
tion is allowed in the refinements. This concept was introduced by Larsen and
Thomsen [16]. The formal definition trivially extends the definition of LTSs
(given in the previous section) by having the two modalities and by requiring
that every must transition is also may one.

From a concrete system described by an LTS we can generate an abstrac-
tion of it by relating concrete states with abstract ones, using a mapping
function. The may-transitions correspond to an over-approximation of the
original and the must ones to an under-approximation. Therefore, the ab-
stract approximations capture in some sense the shape of the original system
and the relations among the states. The next figure presents an example of
abstraction of the system presented in Figure 1.

@ Concrete States
Q Abstract States

» Concrete Transitions
— —p Abstract May Transitions

- Abstract Must Transitions

Fig. 2. Example of Abstraction

All concrete states mapped to the abstract state Ay have a transition to a
state related to the abstract state A, therefore there is a must transition
between Ay and A;. Furthermore, we see that one concrete state (but not
all) related to A; has a transition to a concrete state related to A, so there
is a may transition between them but not a must one. In the figure, may
abstract transitions are marked by the dashed arrows. Whenever there is a
must transition, there is also a may one, but we do not draw these arrows.

2.8 Abstract Interpretation

The theory of abstract interpretation [8,15] denotes a classical framework for
program analysis. The idea is to extract, from high level descriptions of sys-
tems, approximations by eliminating uninteresting information.

A formal specification is interpreted over an abstract domain which is typ-
ically smaller than the concrete domain. A simple example of the technique is
the so-called “rule of signs” used to determine the sign of arithmetic expres-
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sions by performing the computation only over the signs of the operators, i.e.,
the expression —5 * 10 is abstracted to neg * pos which preserves the sign of
the result. We are going to use this method to generate predictions about the
concrete state spaces and distribute efficiently the states among the workers.

To obtain an abstract approximation from a given specification, we inter-
pret the concrete specification over an abstract domain. This results in an
abstract transition system. In order to apply the method, it is needed to
provide the abstract domain, its relation with the concrete domain and a safe
definition of the functions, that appear in the concrete specification, over the
abstract domain.

Finding good abstractions, i.e. abstractions that preserve essential be-
havioural properties of the concrete specification, requires much effort and
a very good knowledge of the system analyzed. However, for our goal of using
abstractions as an indication of the state space structure, any abstraction is
useful! In particular, we will use a few that are automatically generated.

There are several techniques to automatically abstract systems preserving
interesting information. The simplest one is called hiding: first, the value of
some variables of the system is considered as unknown, subsequently, extra
non-determinism is added to the system when there are predicates over the
abstracted variables. We consider a simple example of a recursive process P
with two variables x and y of type natural:

P(z,y) : (z>3ANy<5) —»aPlz+1y—1)
(z<bVy>3)—=bPlx—1ly+1)

The pseudo-code expresses that if one condition is satisfied for a given value
of the variables then an action (a or b) is executed and the values are updated.
Let us consider that the variable y is hidden, then its value is replaced by ?.
Moreover, the functions that operate over y return unknown (?):

P(z):(z>3A?) —a.P(xr+1)
t(x<bV?) = bPlx—1)

If at some point of the execution x has the value 4, then, the first condition
will be (true A?) whose evaluation returns 7, therefore, the abstract system will
have a transition P(4) <,,4y P(5). The second condition will be (trueV ?) which
always evaluates to true, therefore, there will be a transition P(4) L st P(3).
Obviously, variable hiding is not the unique abstraction technique that may be

applied. Our method, explained in detail in [23], is more general allowing the use
of any abstraction approach.
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3 Abstraction Guided Distribution

As we have presented above, computing an abstract approximation of a system
gives a prediction about the shape of the state graph and the connections among
the states. We use the abstract transition system to optimize the number of cross
transitions. However, the abstract graph does not contain information about the
number of concrete states that are related to every abstract state, therefore the
minimization of the cross transitions may have the drawback of the loss of balance
of the system. To attack this problem, we first distribute the abstract states over
C classes. The partitioning algorithm is:

1 - Generate an abstract approximation from the original spec-
ification.

2 - Split the abstract transition system in C classes, optimizing
the number of abstract cross transitions between classes.

3 - Generate the concrete transition system.

4 - Redistribute the classes among the workers balancing the
load of the system.

After the algorithm, one can apply the desired model checking tool, such as bisimu-
lation reduction, cycle elimination, etc. In the next section, we will explain a basic
implementation of the crucial steps of the algorithm, now we discuss some general
considerations.

Step 1 requires to select the suitable parts of the concrete specification to be
abstracted and to provide the abstraction function H to map concrete states to
abstract states. Even the simplest technique of abstract interpretation wvariable
hiding requires some “intelligence” in order to select the variables to hide. It is,
therefore, important to develop an algorithm to automatically select interesting
abstractions. The generation of the abstract transition system is done using existing
tools [3]. The output of this operation is a Modal-LTS.

To split the abstract graph (step 2), optimizing the number of cross transitions
we use the following principles:

e If there is a must transition between two abstract states, A —,,ust B, then there
are transitions from all concrete states related with A to some state related to B.

* If there is not any may transition between two abstract states, A /4y B, then
there are no transitions from any of the concrete states related with A to the ones
related to B.

The idea is to assign to the same class the concrete states (as many of them as
possible) that correspond to abstract states that are connected by must transitions.
Moreover, to assign to different classes the concrete states that correspond to ab-
stract states that are not connected by may transitions. Furthermore, abstract
loops possibly correspond to concrete loops hence it may be convenient to assign
them to a single class. Considering these ideas, the example on Figure 2 will be
split in two classes as follows: {Ap, A1} and {As, As}.

Typically, the abstract graphs are small. Therefore algorithms with high com-
plexity can be safely used. In this step, we generate a mapping G between abstract
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states and classes. The number of classes C is important because it is what makes
the method flexible to equilibrate the balance of the system. On the one hand, if
we select a lot of classes then there will be few abstract states associated to each
of them, therefore the final result will be well balanced but the number of cross
transitions will not be minimized. On the other hand, if we select few classes the
number of cross transitions will be low but the system may be unbalanced. In any
case, C should be greater than the number of workers and smaller than the number
of abstract states.

The generation of the concrete transition system (step 3) is done using the
existing distributed state space generator tool. For every explored concrete state s,
we compute the class to which it belongs by applying G o H to s. The transitions
whose source state belongs to a determined class c are stored together in the same
file. Therefore the output of generation will be a set of C files, one for every class.

While generating the state space we store the number of states that belong
to each class. This number is first computed locally, i.e., every worker stores the
number of states explored by itself. At the end of the computation the results are
gathered. Subsequently (step 4), we can redistribute the classes over the workers,
in order to equilibrate the balance during the application of the different distributed
algorithms.

If we apply the method to on-the-fly model checking, we cannot redistribute in
the balance of the system in the step 4, because we do not have the full state space.
The balance of the system can be guaranteed using other approaches, for instance,
dynamic redistribution of the load.

4 Basic Implementation

For a feasibility study of our distribution policy, we implemented the steps above
with minimal effort. We added code to our existing tools, to measure the effect on
balance and cross transitions, but the implementation leaves still space for improve-
ments. The results are compared with an existing and widely used implementation.
Abstraction (step 1): We start the process with a specification written in pCRL,
which is a language that combines process algebra and abstract data types (see [11]).
In [23], it is discussed how to extract modal abstractions from pCRL specifications
and in [22] the tool kit that implements the abstraction techniques is described.
The selection of the initial abstraction is a crucial point in order to obtain
satisfactory results. In our preliminary experiments, we hide the main part of
the systems. We let unhidden some variables that control the flow of the system.
This technique has the advantage that it can be completely automatized since the
control flow variables can be easily detected. Typically, the control flow represents
accurately the shape of the final graph. This technique generates rather small
abstractions which mainly contain may transitions. We believe that by increasing
the size of the abstractions the results can be better. Moreover, we think that the
abstractions have to contain not only information about the control flow but also
about data.
Splitting (step 2): To assign abstract states to the classes, we traverse the abstract
graph using a breadth first search algorithm giving priority to must transitions.
Then, the first A/C abstract states are assigned to the first class, the next A/C
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states to the second class and so on... If A = k* C then all classes will receive
k abstract states, otherwise some ones will receive one extra abstract state. The
algorithm splits the abstract state space in layers keeping together abstract states
that are connected without performing any kind of calculation.

Redistribution (step 4): After gathering the results of the concrete computation, the
redistribution of the C classes among W workers is done using a “greedy heuristics”.
First, we order the classes by number of concrete states, then we assign one class
to each worker. Subsequently, for each worker, while the number of states assigned
to the worker is smaller than the average, we assign new classes to it.

The choice of the parameter W depends on the availability of resources of the system,
and C on the size of the abstract graph A, as we have pointed in the previous section.

The three algorithms are very simple and the implementation is straightforward.
In the next section we present the results of this basic implementation on different
examples.

5 Experimental Results

We have applied our method to a set of different applications composed by dis-
tributed algorithms, communication protocols and industrial case studies. The ex-
periment consists of the distributed generation of the full state space of the systems
and the computation of some measurements that will determine the performance of
the rest of distributed model checking tools. The next table presents the result of
the experiments, the explanations come below:

Size Parameters Random dist. Abstract dist.
system states transitions || W I A ‘ C WCb IntT WCb IntT
JavaSpaces 1,464,665 5,660,242 8 352 | 32 || 22.66% | 12.55% 21.52% | 49.71%
Lift 2,165,446 6,289,045 4 960 | 16 1.12% | 27.91% 21.54% | 78.50%
IEEE-139/ 371,804 641,565 8 742 | 32 0.42% | 12.54% 43.18% | 69.68%
Leader 2,416,632 16,605,592 8 | 2916 | 64 1.92% | 12.51% 23.12% | 81.09%
Splice 18,140,058 | 186,085,954 4 40 | 16 0.93% | 25.00% 123.26% | 91.89%
CCP 8,079,312 60,887,345 8 | 3740 | 64 1.54% | 54.44% 8.92% | 84.13%
Bad Client || 13,859,510 71,817,848 8 540 | 32 1.16% | 28.63% 23.48% | 26.87%

Fig. 3. Benchmark for abstraction guided distribution

In every state space generation, we, basically, compute for the random distribution
and for the abstraction guided distribution, the worst case balance (WCb) and the
ratio of internal transitions (IntT), as defined in Section 2.1. Remark that we want
to maximize the first figure and minimize the second one. The table shows also:
the number of workers of the cluster (W), the number of abstract states (A) and
the number of classes (C).

We briefly describe the systems analyzed in order to give an impression of the
heterogeneity of the experiments: JavaSpaces is a shared data space architecture
used to facilitate the coordination and communication of distributed applications.
The specification was described in [21], it describes a fault-tolerant algorithm that
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performs the parallel summation of a set of numbers. Lift models an industrial
system to control a distributed system with multiple lift legs (see [10]). IEEE-
1394 [17] is a standard that models a high performance serial multimedia bus for
connecting together a collection of systems and devices in order to carry all forms
of digitized information. The specification describes the link layer of the protocol.
Leader models a protocol for leader election that is implemented in the TEEE-
1394. Information about the two latter specifications can be found at [20]. Splice
is a high performance publish-subscribe architecture. The specification analyzed
presents a simple producer-transformers-consumer (see [14]). CCP models a cache
coherence protocol for distributed multi-threaded Java programs (see [19]). Bad
Client [6] is a security protocol for fair exchange of items using a smart card in
mobile environments.

In all the cases but one the percentage of internal transitions is much higher
using the abstract distribution than using the random one. In the case of the
Leader specification it is 6.5 times better. The only non-positive result is given by
the Bad Client protocol. In this case the number of internal transitions is slightly
worse than in the random case. This bad result may come from the fact that the
number of abstract states of the initial abstraction is too small in relation with the
number of concrete states or from a wrong selection of the initial abstraction. Even
though the last non-positive result, in the rest of the cases the gain is considerable.

The random distribution maximizes the balance of the system, the worst case
balance is typically very close to the average. For the abstraction guided distribution
the balance is not that perfect. The only case that the loss of balance is important
is for the Splice system in which one worker receives more than half of the states.
This is due to the very small number of abstract states of the selected abstraction,
which, however, leads to a very good transitions ratio.

The abstractions are computed in few seconds and the complexity of the state
space generation is not incremented by performing the abstraction guided distribu-
tion. It is only needed to compute the mapping function from concrete states to
abstract classes for every new state. The final redistribution is quickly computed
due to the very small number of classes.

6 Conclusions and Future Work

We presented an efficient method of partitioning very large state spaces, based on
Abstract Interpretation techniques. The information given by the abstract graph is
used to distribute the concrete state space in such a way that the number of cross
transitions becomes small, while the block sizes are kept balanced.

Although good abstractions are hard to define because they require a good
insight into the analyzed system, any abstraction serves our goal of predicting the
connectivity of the concrete states. Therefore, standard automatically generated
abstractions can also be used. Moreover, this method is very well scalable: the
abstract graph is always small (a few hundred transitions at most), regardless the
size of the concrete state space.

The next phase of the experiments will consist in doing some tests about the
performance speed-up of the distributed model checking tools. For this purpose, we
have to integrate the methodology in the existing distributed tools. We consider
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that the measurements presented above are a good indication about the final results,
therefore we expect to increase the performance, specially for the cycle reduction
algorithm in which the distribution of transitions plays a very important role. Our
method is completely scalable and has no extra cost for bigger instances of systems.

As we have seen, the algorithms used on the experiments are very simple. We
believe that using more sophisticated algorithms may produce better distributions
of states and transitions. We are currently working on an interface of our implemen-
tation with the software package Chaco [12], which provides a collection of efficient
graph partitioning algorithms.

The abstraction guided approach is “model independent”, it will likely work for
other state space representations, like Kripke structures, Markov chains and Petri
nets. It would be also interesting to see if it can be applied to symbolic (BDD
based) model checking.

The fact that the abstraction is computed directly from the system specification
allows the use of this method for on-the-fly model checking as well. In this case,
because the number of concrete states per abstract state is not known, the balance
must be guaranteed in a different way, for example by implementing a dynamic
redistribution of abstract states.
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